Multi-task Representation Learning for Demographic Prediction

نویسندگان

  • Pengfei Wang
  • Jiafeng Guo
  • Yanyan Lan
  • Jun Xu
  • Xueqi Cheng
چکیده

Demographic attributes are important resources for market analysis, which are widely used to characterize different types of users. However, such signals are only available for a small fraction of users due to the difficulty in manual collection process by retailers. Most previous work on this problem explores different types of features and usually predicts different attributes independently. However, manually defined features require professional knowledge and often suffer from under specification. Meanwhile, modeling the tasks separately may lose the ability to leverage the correlations among different attributes. In this paper, we propose a novel Multi-task Representation Learning (MTRL) model to predict users’ demographic attributes. Comparing with the previous methods, our model conveys the following merits: 1)By using a multi-task approach to learn the tasks, our model leverages the large amounts of cross-task data, which is helpful to the task with limited data; 2)MTRL uses a supervised way to learn the shared semantic representation across multiple tasks, thus it can obtain a more general and robust representation by considering the constraints among tasks. Experiments are conducted on a real-world retail dataset where three attributes (gender, marital status, and education background) are predicted. The empirical results show that our MTRL model can improve the performance significantly compared with the state-of-the-art baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-task Learning for Recommender Systems

This paper focuses on exploring personalized multi-task learning approaches for collaborative filtering towards the goal of improving the prediction performance of rating prediction systems. These methods first specifically identify a set of users that are closely related to the user under consideration (i.e., active user), and then learn multiple rating prediction models simultaneously, one fo...

متن کامل

Clustered Multi-task Feature Learning for Attribute Prediction

Semantic attributes have been proposed to bridge the semantic gap between low-level feature representation and high-level semantic understanding of visual objects. Obtaining a good representation of semantic attributes usually requires learning from high-dimensional low-level features, which often suffers from the curse of dimensionality. Designing a good feature-selection approach would benefi...

متن کامل

Co-evolutionary multi-task learning for dynamic time series prediction

Multi-task learning employs shared representation of knowledge for learning multiple instances from the same or related problems. Time series prediction consists of several instances that are defined by the way they are broken down into fixed windows known as embedding dimension. Finding the optimal values for embedding dimension is a computationally intensive task. Therefore, we introduce a ne...

متن کامل

Learning to Make Predictions on Graphs with Autoencoders

We examine two fundamental tasks associated with graph representation learning: link prediction and semi-supervised node classification. We present a densely connected autoencoder architecture capable of learning a joint representation of both local graph structure and available external node features for the multi-task learning of link prediction and node classification. To the best of our kno...

متن کامل

Multi-task Learning for Gender and Age Prediction on Chinese Microblog

The demographic attributes gender and age play an important role for social media applications. Previous studies on gender and age prediction mostly explore efficient features which are labor intensive. In this paper, we propose to use the multi-task convolutional neural network (MTCNN) model for predicting gender and age simultaneously on Chinese microblog. With MTCNN, we can effectively reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016